包含机器学习在大规模数据处理中的应用的词条

本文目录一览:

如何利用Mahout和Hadoop处理大规模数据

利用Mahout和Hadoop处理大规模数据

包含机器学习在大规模数据处理中的应用的词条

规模问题在机器学习算法中有什么现实意义?让我们考虑你可能需要部署Mahout来解决的几个问题的大小。

据粗略估计,Picasa三年前就拥有了5亿张照片。 这意味着每天有百万级的新照片需要处理。一张照片的分析本身不是一个大问题,即使重复几百万次也不算什么。但是在学习阶段可能需要同时获取数十亿张照片中的信息,而这种规模的计算是无法用单机实现的。

据报道,Google News每天都会处理大约350万篇新的新闻文章。虽然它的绝对词项数量看似不大,但试想一下,为了及时提供这些文章,它们连同其他近期的文章必须在几分钟的时间内完成聚类。

Netflix为Netflix Prize公布的评分数据子集中包含了1亿个评分。因为这仅仅是针对竞赛而公布的数据,据推测Netflix为形成推荐结果所需处理的数据总量与之相比还要大出许多倍。

机器学习技术必须部署在诸如此类的应用场景中,通常输入数据量都非常庞大,以至于无法在一台计算机上完全处理,即使这台计算机非常强大。如果没有 Mahout这类的实现手段,这将是一项无法完成的任务。这就是Mahout将可扩展性视为重中之重的道理,以及本书将焦点放在有效处理大数据集上的原因,这一点与其他书有所不同。

将复杂的机器学习技术应用于解决大规模的问题,目前仅为大型的高新技术公司所考虑。但是,今天的计算能力与以往相比,已廉价许多,且可以借助于 Apache Hadoop这种开源框架更轻松地获取。Mahout通过提供构筑在Hadoop平台上的、能够解决大规模问题的高质量的开源实现以期完成这块拼图,并可为所有技术团体所用。

Mahout中的有些部分利用了Hadoop,其中包含一个流行的MapReduce分布式计算框架。MapReduce被谷歌在公司内部得到广泛使用 ,而Hadoop是它的一个基于Java的开源实现。MapReduce是一个编程范式,初看起来奇怪,或者说简单得让人很难相信其强大性。 MapReduce范式适用于解决输入为一组"键 值对"的问题,map函数将这些键值对转换为另一组中间键值对,reduce函数按某种方式将每个中间键所对应的全部值进行合并,以产生输出。实际上,许多问题可以归结为MapReduce问题,或它们的级联。这个范察罩式还相当易于并行化:所有处理都是独立的,因此可以分布到许多机器上。这里不再赘述 MapReduce,建议读者参考一些入门教程来了解它,如Hadoop所提供的

Hadoop实现了MapReduce范式,即便MapReduce听上去如此简单,这仍然银没竖称得上是一大进步。它负责管理输入数据、中间键值对以及输出数据的存储;这些数据可能会非常庞大,并且必须锋大可被许多工作节点访问,而不仅仅存放在某个节点上。Hadoop还负责工作节点之间的数据分区和传输,以及各个机器的故障监测与恢复。理解其背后的工作原理,可以帮你准备好应对使用Hadoop可能会面对的复杂情况。Hadoop不仅仅是一个可在工程中添加的库。它有几个组件,每个都带有许多库,还有(几个)独立的服务进程,可在多台机器上运行。基于Hadoop的操作过程并不简单,但是投资一个可扩展、分布式的实现,可以在以后获得回报:你的数据可能会很快增长到很大的规模,而这种可扩展的实现让你的应用不会落伍。

鉴于这种需要大量计算能力的复杂框架正变得越来越普遍,云计算提供商开始提供Hadoop相关的服务就不足为奇了。例如,亚马逊提供了一种管理Hadoop集群的服务 Elastic MapReduce,该服务提供了强大的计算能力,并使我们可通过一个友好的接口在Hadoop上操作和监控大规模作业,而这原本是一个非常复杂的任务。

大数据处理的五大关键技术及其应用

作者 | 网络大数据

来源 | 产业智能官

数据处理是对纷繁复杂的海量数据价值的提炼,而其中最有价值的地方在于预测性分析,即可以通过数据可视化、统计模式识别、数据描述等数据挖掘形式帮助数据科学家更好的理解数据,根据数据挖掘的结果得出预测性决策。其中主要工作环节包括机器学习在大规模数据处理中的应用

大数据采集 大数据预处理 大数据存储及管理 大数据分析及挖掘 大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

一、大数据采集技术

数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。

大数据采集一般分为:

大数据智能感知层:主要包括数据传感体系、网络通信体系、传感尘卜适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。

基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。

二、大数据预处理技术

完成对已接收数据的辨析、抽取、清洗等操作。

抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助机器学习在大规模数据处理中的应用我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。

清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

三、大数据存储及管理技术

大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。

开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含机器学习在大规模数据处理中的应用了传统关系数据库系派档穗统以及NewSQL数据库。

开发大数据安全技术:改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。

四、大数据分析及挖掘技术

大数据分析技术:改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

数据挖掘涉及的技术方法很多,有多种分类法。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法蠢乎、神经网络方法和数据库方法。

机器学习中,可细分为归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。

数据挖掘主要过程是:根据分析挖掘目标,从数据库中把数据提取出来,然后经过ETL组织成适合分析挖掘算法使用宽表,然后利用数据挖掘软件进行挖掘。传统的数据挖掘软件,一般只能支持在单机上进行小规模数据处理,受此限制传统数据分析挖掘一般会采用抽样方式来减少数据分析规模。

数据挖掘的计算复杂度和灵活度远远超过前两类需求。一是由于数据挖掘问题开放性,导致数据挖掘会涉及大量衍生变量计算,衍生变量多变导致数据预处理计算复杂性;二是很多数据挖掘算法本身就比较复杂,计算量就很大,特别是大量机器学习算法,都是迭代计算,需要通过多次迭代来求最优解,例如K-means聚类算法、PageRank算法等。

从挖掘任务和挖掘方法的角度,着重突破:

可视化分析。数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。数据图像化可以让数据自己说话,让用户直观的感受到结果。 数据挖掘算法。图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。 预测性分析。预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。 语义引擎。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。 数据质量和数据管理。数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。

预测分析成功的7个秘诀

预测未来一直是一个冒险的命题。幸运的是,预测分析技术的出现使得用户能够基于历史数据和分析技术(如统计建模和机器学习)预测未来的结果,这使得预测结果和趋势变得比过去几年更加可靠。

尽管如此,与任何新兴技术一样,想要充分发挥预测分析的潜力也是很难的。而可能使挑战变得更加复杂的是,由不完善的策略或预测分析工具的误用导致的不准确或误导性的结果可能在几周、几个月甚至几年内才会显现出来。

预测分析有可能彻底改变许多的行业和业务,包括零售、制造、供应链、网络管理、金融服务和医疗保健。AI网络技术公司Mist Systems的联合创始人、首席技术官Bob fridy预测:“深度学习和预测性AI分析技术将会改变我们社会的所有部分,就像十年来互联网和蜂窝技术所带来的转变一样。”。

这里有七个建议,旨在帮助您的组织充分利用其预测分析计划。

1.能够访问高质量、易于理解的数据

预测分析应用程序需要大量数据,并依赖于通过反馈循环提供的信息来不断改进。全球IT解决方案和服务提供商Infotech的首席数据和分析官Soumendra Mohanty评论道:“数据和预测分析之间是相互促进的关系。”

了解流入预测分析模型的数据类型非常重要。“一个人身上会有什么样的数据?” Eric Feigl - Ding问道,他是流行病学家、营养学家和健康经济学家,目前是哈佛陈氏公共卫生学院的访问科学家。“是每天都在Facebook和谷歌上收集的实时数据,还是难以访问的医疗记录所需的医疗数据?”为了做出准确的预测,模型需要被设计成能够处理它所吸收的特定类型的数据。

简单地将大量数据扔向计算资源的预测建模工作注定会失败。“由于存在大量数据,而其中大部分数据可能与特定问题无关,只是在给定样本中可能存在相关关系,”FactSet投资组合管理和交易解决方案副总裁兼研究主管Henri Waelbroeck解释道,FactSet是一家金融数据和软件公司。“如果不了解产生数据的过程,一个在有偏见的数据上训练的模型可能是完全错误的。”

2.找到合适的模式

SAP高级分析产品经理Richard Mooney指出,每个人都痴迷于算法,但是算法必须和输入到算法中的数据一样好。“如果找不到适合的模式,那么他们就毫无用处,”他写道。“大多数数据集都有其隐藏的模式。”

模式通常以两种方式隐藏:

模式位于两列之间的关系中。例如,可以通过即将进行的交易的截止日期信息与相关的电子邮件开盘价数据进行比较来发现一种模式。Mooney说:“如果交易即将结束,电子邮件的公开率应该会大幅提高,因为买方会有很多人需要阅读并审查合同。”

模式显示了变量随时间变化的关系。“以上面的例子为例,了解客户打开了200次电子邮件并不像知道他们在上周打开了175次那样有用,”Mooney说。

3 .专注于可管理的任务,这些任务可能会带来积极的投资回报

纽约理工学院的分析和商业智能主任Michael Urmeneta称:“如今,人们很想把机器学习算法应用到海量数据上,以期获得更深刻的见解。”他说,这种方法的问题在于,它就像试图一次治愈所有形式的癌症一样。Urmeneta解释说:“这会导致问题太大,数据太乱——没有足够的资金和足够的支持。这样是不可能获得成功的。”

而当任务相对集中时,成功的可能性就会大得多。Urmeneta指出:“如果有问题的话,我们很可能会接触到那些能够理解复杂关系的专家” 。“这样,我们就很可能会有更清晰或更好理解的数据来进行处理。”

4.使用正确的方法来完成工作

好消息是,几乎有无数的方法可以用来生成精确的预测分析。然而,这也是个坏消息。芝加哥大学NORC (前国家意见研究中心)的行为、经济分析和决策实践主任Angela Fontes说:“每天都有新的、热门的分析方法出现,使用新方法很容易让人兴奋”。“然而,根据我的经验,最成功的项目是那些真正深入思考分析结果并让其指导他们选择方法的项目——即使最合适的方法并不是最性感、最新的方法。”

罗切斯特理工学院计算机工程系主任、副教授shanchie Jay Yang建议说:“用户必须谨慎选择适合他们需求的方法”。“必须拥有一种高效且可解释的技术,一种可以利用序列数据、时间数据的统计特性,然后将其外推到最有可能的未来,”Yang说。

5.用精确定义的目标构建模型

这似乎是显而易见的,但许多预测分析项目开始时的目标是构建一个宏伟的模型,却没有一个明确的最终使用计划。“有很多很棒的模型从来没有被人使用过,因为没有人知道如何使用这些模型来实现或提供价值,”汽车、保险和碰撞修复行业的SaaS提供商CCC信息服务公司的产品管理高级副总裁Jason Verlen评论道。

对此,Fontes也表示同意。“使用正确的工具肯定会确保我们从分析中得到想要的结果……”因为这迫使我们必须对自己的目标非常清楚,”她解释道。“如果我们不清楚分析的目标,就永远也不可能真正得到我们想要的东西。”

6.在IT和相关业务部门之间建立密切的合作关系

在业务和技术组织之间建立牢固的合作伙伴关系是至关重要的。客户体验技术提供商Genesys的人工智能产品管理副总裁Paul lasserr说:“你应该能够理解新技术如何应对业务挑战或改善现有的业务环境。”然后,一旦设置了目标,就可以在一个限定范围的应用程序中测试模型,以确定解决方案是否真正提供了所需的价值。

7.不要被设计不良的模型误导

模型是由人设计的,所以它们经常包含着潜在的缺陷。错误的模型或使用不正确或不当的数据构建的模型很容易产生误导,在极端情况下,甚至会产生完全错误的预测。

没有实现适当随机化的选择偏差会混淆预测。例如,在一项假设的减肥研究中,可能有50%的参与者选择退出后续的体重测量。然而,那些中途退出的人与留下来的人有着不同的体重轨迹。这使得分析变得复杂,因为在这样的研究中,那些坚持参加这个项目的人通常是那些真正减肥的人。另一方面,戒烟者通常是那些很少或根本没有减肥经历的人。因此,虽然减肥在整个世界都是具有因果性和可预测性的,但在一个有50%退出率的有限数据库中,实际的减肥结果可能会被隐藏起来。

六、大数据展现与应用技术

大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。

在我国,大数据将重点应用于以下三大领域:商业智能 、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。

请问大数据分析和机器学习之间的区别与联系?

现如今是一个信息的时代,社会上任何行为都是以信息为前提去执行的。而信息又是对数据的处理加工得来的,所以“数据”是时代的主宰。大数据、数据挖掘和机器学习这三者是面对数据通常采用的手段。而这三者之间又是怎样的区别呢?

大数据是一个相对抽象的概念,目前国内外学术界还没有对大数据的定义形成统一的意见。美国国家科学基金会(National Science Foundation,United States)基于数据特征及数据来源角度对大数据进行雹拆了定义,认为大数据是一种复杂的、大规模的、长期的、多元化的分布式数据集,由一系列的数据源生成,包括网络点击流、音视频软件、E-mail、科学仪器、互联网交易、传感设备等。

所谓数据挖掘,又叫做数据库中的知识发现,简称为KDD。关于数据挖掘技术的定义,国际上目前比较广泛认可的宽消是U.M.Fayyad 等人说明的,即数据挖掘技术就是在模糊的、有噪声的、不完全的、大量的、随机的数据中,提取潜在的、人们事先不知道的、隐含在其中的有价值的知识与信息的过程。

机器学习是基于对海量信息处理的需求产生的一门涉及多个学科领域交叉的学科,“机器学习是对能通过经验自动改进的计算机算法研究”。其主要目的是研究计算机如何通过学习人类的思维和行为,来自动获取新知识,自动适应环境的变化的。机器学习是人慎肆知工智能的核心思想。

现代各企业都十分注重数据,面对各种各样的数据,因而也衍生了各大数据服务平台,例如,华为云机器学习平台(MLS)是EI的一项基础服务,帮助用户通过机器学习技术迅速发现数据规律,构建预测模型,并将其部署为预测分析解决方案。不管现在和将来,数据都会成为时代的标志。

人工智能和机器学习在数据挖掘的应用

人工智能(Artificial),英文缩写基戚为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

人工智能是对人的意识、物锋败思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的罩颤。[1]

支持向量机(SVM)是否适合大规模数据?

关于什么是大规模机器学习机器学习在大规模数据处理中的应用,可以参考[1, 2, 3]的讨论。显然,大小是个相对的概念,在机器学习的语境下也不例外,什么是大规模,这很大程度上取决于你所面对的应用以及可用的计算资源。在互联网应用成为机器学习主要应用领域之一的今天,能不能处理Google或者淘宝这样重量级的网站所生成的数据,成为互联网从业人员心目中大规模的标尺。 从技术角度看,统计学习算法所能处理的数据规模有几个分水岭: 1)算法是否依赖于对训练集的随机访问。依赖于训练集随机访问的算法需要将训练集全部加载进内存,所能处理的数据量受内存大小的限制。 2)算法是否能有效地利用分布式(或并行的)计算资源。单台计算机(或单处理器)的处理能力毕竟是有限的。如果可用的计算资源增长100倍,算法能处理的数据量的增长远小于100倍,则算法的适用范围也会有很大的限制。 以上主要是围绕训练集的规模在讨论,实际上还会有更多需要考虑的问题,比如数据的维数、分类类别的数目、检测时的效率等等问题,可以参考[2]及其中提到的相关文献。如[3]中所说,(传统的?)统计学习的核心问题是样本不足时如何得到泛化能力很强的模型,但对铅并于大规模学习来说,障碍往往在于算法的计算能力不足,不是数据不够,所以也可以说传统的统计学习方法都不适合大规模数据处理(不只是SVM)。 因为互联网应用的推动,最近几年这个领域新结果非常多。总体来说,对于基于支持向量机的大规模线性分类问题,目前已经能比较好地解决。[4]对现有结果做机器学习在大规模数据处理中的应用了比槐悉迹较好的总结,[2]则对需要进一步解决的问题有很好的概述陆指。 对于非线性分类问题,基于Dual Decomposition(或者SMO)方法的SVM-Light和LibSVM目前仍被广泛使用,他们最坏情况下复杂度是O(训练样本数的平方),并不适合在大规模数据集上做训练。Pegasos[5]的复杂度同训练样本数呈线性关系,但实验中效率并不高于SMO方法。盛佳提到的PSVM[6]利用分布式计算资源降低训练耗时。不过在我接触过的应用场景里(比如对象检测),非线性SVM的最大问题不是训练时代价问题,而是检测时代价太高,在实际应用中基本上已经退出竞争。当然,相关的研究并没有终止——毕竟不同的应用场景会有不同的需求。 对于未来的发展,还是多看看[2]吧。

机器学习

机器学习是人工智能机器学习在大规模数据处理中的应用的一个子集。

这项技术机器学习在大规模数据处理中的应用的主要任务是指导计算机从数据中学习机器学习在大规模数据处理中的应用,然后利用经验来改善自身的段猛袭性能,不需要进行明确的编程。在机器学习中,算法会不断进行训练,从大型数据集中发现模式和知指相关性,然后根据数据分析结果做出最佳决策和预测。

特点

机器学习应用具有自机器学习在大规模数据处理中的应用我演进能力,它们获得的数据越多,准确性会越高。机器学习技术握兄的应用无处不在,比如我们的家居生活、购物车、娱乐媒体以及医疗保健等。

机器学习算法能够识别模式和相关性,这意味着它们可以快速准确地分析自身的投资回报率。对于投资机器学习技术的企业来说,他们可以利用这个特性,快速评估采用机器学习技术对运营的影响。

本站内容来源于互联网,由于内容是机器自动获取,无法一一甄别,如果有侵权的内容,请联系站长处理