智能驾驶技术的安全性评估与实践探究(智能驾驶的难题)

本文目录一览:

智能网联汽车创新发展的探索与实践

智能网联汽车是我国5G时代的重要的产业之一,目前我国企业已经多处布局智能网联汽车产业链环节,中国的智能网联汽车产业规模也呈快速增趋势。从投融资看,股权投融资数量减少,IPO数量增多,产业正在向成熟阶段发展。

智能驾驶技术的安全性评估与实践探究(智能驾驶的难题)

智能网联汽车相关上市公司:目前国内智能网联汽车产业的上市公司主要有四维图新(002405)、海格通信(002465)、凯龙高科(300912)、华域汽车(600741)、科大讯飞(002230)、上汽集团(600104)等。铅祥友

本文核心数据包含:智能网联汽车渗透率、智能网联汽车产业规模

智能网联汽车技术发展和应用是我国科技创新支撑加快建设交通强国的重要内容,从智能网联汽车的产业链结构来看,智槐槐能网联汽车产业上游行业有:感知系统制造业,包含摄像头制造业、雷达制造业和高精地图与定位系统设计行业等;控制系统制造业,包含有算法设计行业、芯片制造业和操作系统供应业等;通讯系统制造业,包含有电子电器架构制造业和云平台设计行业。

产业链中游行业有执行系统制造业和整车制造行业,执行系统行业中包含了ADAS系统、智能中控和语音交互等的设计和制造行业。

产业链下游主要为开发测试和运营的行业,包含有开发测试业、出行服务业和物流服务业等。

从智能网联汽车产业链全景图来看,智能网联汽车产业链涵盖了互联网产业和汽车产业的诸多企业,并且我国国产企业已经在产业链多个环节完成布局。智能网联汽车产业链中,我国具有代表性的公司有中科创达、德赛西威、路畅科技、科大讯飞、傲硕科技、东软集团等。

智能网联汽车产业链现状

——总体情况

随着智能网联技术的进步、产品持续迭代升级以及整车电子电气架构发展颠覆性改变,大批互联网公司涌入国内市场,以跨界合作方式切入智能网联汽车领域,上汽、北汽、长安、广汽等传统车企开始研发、测试和推出宴消智能网联车型。

目前,我国企业已经布局智能网联汽车各个产业链环节中的大部分生产环节,从而引领中国智能网联汽车产业实现由大变强。根据iResearch统计数据,2016-2020年我国智能网联汽车产业规模呈现连续上涨趋势,2020年产业规模增长到了2556亿元,同比增长54.3%。

——上游情况

智能网联汽车的上游行业包含感知系统、控制系统和通讯系统制造业。不过在智能网联汽车制造中,上游环节最重要的是感知系统。当前自动驾驶环境感知的技术路线主要有两种,一种是摄像头主导、配合毫米波雷达等低成本传感器的视觉主导方案;另一种则以激光雷达为主导,配合摄像头、毫米波雷达等传感端元器件。

在车载摄像头市场方面,据统计,2015-2020年中国车载摄像头市场规模呈现逐年增长的态势,预计到2020年有望达到57亿元,年复合增长率CAGR超过32%。

在车载毫米波雷达市场方面,24GHz目前大量应用于汽车的盲点监测、变道辅助,2015-2019年中国毫米波雷达市场规模持续增长,2019年约为57亿元,同比增长35.7%,预计2020年中国车载毫米波雷达市场航规模增长到75亿元。

在激光雷达市场现状方面,激光雷达被认为是汽车市场自动驾驶车辆开发和运行的关键部件。该技术是光检测和测距的简称,它使用激光计算物体的距离,这些激光的光脉冲会生成这些物体的3D信息。

2016-2019年,我国车载激光雷达市场市场规模持续扩大,2019年,我国车载激光雷达市场规模由2016年的1.9亿元扩大到4.5亿元,2019年中国车载激光雷达市场超过2016年的2倍。预计2020年中国车载激光雷达市场规模达到6.7亿元。

——中游情况

从执行系统中最重要的ADAS系统市场现状来看,ADAS系统主要的功能在于感知道路环境以及做出相应决策上,近年来随着我国汽车市场迅速发展,ADAS市场增长迅速。随着新型传感器技术的开发和突破,ADAS系统应用将在中低端汽车市场开始推广。

而规模经济优势助力厂商降低成本,进一步推动ADAS系统市场的增长。2016-2019年中国ADAS系统市场规模快速增长,2019年ADAS市场规模约为542亿元,同比45.7%,预计2020年市场规模增长到800亿元。

在智能联网汽车整车方面,根据国家工业信息安全发展研究中心的《AI智能下的汽车产业裂变——中国汽车企业与新一代信息技术融合发展报告(2019)》,2018年智能网联新车型渗透率达到31.1%,相较2016年增长近5倍;

2018年中国品牌智能网联新车型渗透率达到35.3%,相较2016年增长15倍。《报告》预计到2020年智能网联汽车新车型渗透率将达到51.6%。初步估计,2020年我国智能汽车销量约为1306万辆。

——下游情况

智能网联汽车的下游应用端主要包括有出行、物流、城市交通管理等场景,在出行场景、物流场景等领域我国企业已经有了一定程度的尝试,例如滴滴出行利用自动驾驶车辆在收集路测数据的同时提升研发效率。

智能网联汽车核心系统部件以外资占主导

目前全球ADAS系统集成商主要由海外零部件巨头垄断,如博世、大陆、德尔福、电装、奥托立夫等,全球前五名的系统集成商占据超过65%的市场份额。

从智能网联汽车核心的汽车电子领域竞争格局来看,2019年全球汽车电子市场份额中,绝大部分都属于外资企业,根据赛迪统计数据,2019年全球汽车电子市场中,德国博世、德国大陆和日本电装的市场份额占比位列前三位,分别占比为16.6%、10.8%和9.8%;而前十名企业中中国国内企业数量稀少。

政策加码,市场前景广阔

2015-2021年随着5G的不断普及,国内为了推动智能网联汽车的发展,从中央政府到各级地方政府,相继制定了一系列政策法规和标准体系,打通汽车、通信、交通等各方面关联方,协同发展。

随着智能网联技术的快速发展,智能汽车领域正成为新一轮科技革命和产业革命的战略高地,我国智能汽车行业迎来了发展的黄金期,车联网汽车的数量不断增加,智能网联汽车的产业规模预计也将呈现连续增长趋势。到2026年,预计我国智能网联汽车产业规模将达到5859亿元。

以上数据及分析来源参考前瞻产业研究院发布的《中国智能网联汽车(ICV)行业发展模式与投资战略规划分析报告》。

如果未来交通工具都是自动驾驶,该如何保证出行安全呢?

如果未来交通工具都是自动驾驶,该如何保证出行安全呢?

智能驾驶技术不可以出现这种系统漏洞,比如说我用起来自己车的智能驾驶技术,他往前开呢,忽然系统软件出了一个系统漏洞,他不知道该怎么鉴别向左拐简悔物或是向右拐了。坚信伴随着新一代智能传感器技术和自动驾驶芯片的应用,伴随着不断迭代的系统软件,不断完善的通讯技术,积累沉淀的基础知识情境与实例,也有愈来愈完备的无人驾驶法规标准,无人驾驶不久的将来一定会更安全,更为靠谱。

车辆的智能驾驶技术发生系统漏洞也不是简单的说系统软件出问题了也直接就全自动泊车就能解决的,因为有的地区它不便泊车,忽然泊车所带来的问题同样也有可能会导致追尾事故,后边的车还没来得及反映。那也是现实中需要考虑的现象,但是现在智能驾驶技术它只是作为一个帮助的开车技术,你一直在较为竖直道路上能让他自身安全驾驶,但你手你的位置是不可以离去主驾的,一旦发生什么意外还是得靠你积极的去管理方法这两台车辆。

智能驾驶技术持续发展的迅速,在一些实时路况好一点的地区已经能做到无人驾驶在小区停车位什么的,还可以做自动泊车系统什么的,这些方面损害持续发展的更快,可是安全隐患并没有彻底消除,它普及化就依然会是一个难题难做,因为你没有方法让绝大多数使用人坚信智能驾驶技术安全性,仅仅说这些技术性很新颖,你能体验一下,这可是不行的,是因为客户感觉技术性再怎样新奇就是自己的人身安全关键。那将来一定会开展大量智能驾驶技术层面的开发,比如最近5G互联网在慢慢实行就增添了较低的网络延时度,无人驾驶程序流程,很有可能依据实时路况获得的数据反映,速率就更加容易,能够拦液更好的在高速驾驶状态下确保车主安全前旦性,这便是一个很大的发展,可是智能驾驶技术也是需要开展更多试验及其技术的跨越的。

多维度构建体系 日产/中汽中心发布智能网联汽车自动驾驶报告

易车讯  3月9日,日产汽车公司、日产(中国)投资有限公司与中国汽车技术研究中心有限公司(以下简称:CATARC)联合发布了《智能网联汽车自动驾驶系统测评及管理方法研究报告》。

自2018年起,中汽中心标准化研究所与日产汽车公司、日产汽车(中国)投资有限公司通过分析各国政策推进方案、标准法规适用性、测试评价方法等内容,完成“智能网联汽车自动驾驶系统测评及管理方法”的研究工作并形成《智能网联汽车自动驾驶系统测评及管理方法研究报告》。

本次发布的《研究报告》汇总了自2018年共同研究开始以来各国自动驾驶发展的现状,并对产业发展趋势及中国现行标准及法律适用性进行了分析。此外,报告还通过问卷方式,对50余家企业散铅颤的自动驾驶技术现状及测试评价相关需求进行调研,确定核心功能和关键性能,形成适用于自动驾驶功能现状及未来技术发展趋势的测试评价方法,研究成果也将作为后续自动驾驶功能相关试验方法和功能要求标准的重要参考,并提交至相关政策制定部门,为标准制定、行业组织和机构科学研究、产业界研发与规划提供支撑。

该报告由中汽中心标准所组织撰写,得到了日产汽车公司与日产(中国)投资有限公司的技术支持,雷诺-日产-三菱联盟全球副总裁吉泽隆分享了日产汽车在智能网联汽车自动驾驶领域的最新成果,并展望了智能网联汽车的广阔发展前景。

吉泽表示,自动驾驶体系的评价包括安全、及时、准确、顺畅等几大原则,而日产在当中承担了重要的角色,日产针对中国路况、驾驶员能力等研究方面提供了帮助,2016年开始日产即与中汽中心在先进驾驶辅助功能方面展开共同研究,而基于上次的经验和良好合作关系,日产愿用自己的经验帮助在中国尽快就相关自动驾驶体系完成构建,未来日产汽车将继续与中汽中心标准所合作,通过对自动驾驶安全评测方法的探索研究,支撑中国自动驾驶标准体系建设,为加速这一技术的市场导入和商业化推广做出贡献。”

《智能网联汽车自动驾驶系统测评及管理方法研究报告》的关键点聚焦于具备自动驾驶功能的车辆准入和管理需求的测试评价方法,其中包括仅需提交报告而无需进行测试项目验证的非实车测试,需要向第三方测试机构提供测试车辆并完成制定测试项目的实车测试,此外在车辆进入市场后,还应对于车辆软件升级进行监管。

具体来看,非实车测试包括安全性评估和体系审核,其中安全性评估包括实车测试和仿真测试,其目的是为了确认企业对于自动驾驶系统进行充分的安全性评估,将通过企业和第三方机构共同完成,其中企业选择合适测试方法并提交说明材料,由标准化机构制定与安全性评估相关标准,再由第三方机构审核材料并出具审核结果报告,最后管理部门来进行报告的审核;

体系审核包括信息安全、功能安全和网络升级,其中信息和功能安全是为了确认企业具备信息安全/功能安全的开发流程的需要,由企业确保流程的应用及说明材料的真实性,标准化机构冲败制定信息安全/功能安全流程类标准,第三方机构审核材料并出具审核结果报告,最后管理部门审核结果。

而软件升级流程管理审核则为了确保企业具备可以保证车辆运行安全的软件升级流程,由企业确定完善的软件升级流程并正确运用,标准化机构制定流程类和技术要求类标准,最后由管理部门受理、审核、备案企业软件升级事件。

而实车测试包括封闭场地测试、道路测试以及其他测试方法,其中性能测试要确定自动驾车辆处理复合随机场景的能力判定,安全性测试选取具有一定危险性的场景,验证车辆安全性;实际道路测试则为了处理公共交通的综合能力验证,由第三方机构选定车型使用自动驾驶功能在规定时间内行驶于选定典型路段,测试内容在行驶中随机出现,测试车辆的反应能力,记录车辆行驶情况及反馈结果。

DSSAD功能确认通过场地及实验室试验的方案确认自动驾驶系统数据记录系统(DSSAD)的功能,由第三方机构测试车载数据记录系统记录内容、记录时间等功能要求并记录结果。

此外,在使用过程中要确保对用使用车辆的监督,确认企业所实施的与车辆认证相关的软件升级的内容,评估升级对于车辆影响的性质和程度,确认未对车辆的标准符合性带来影响。

本次发布的《研究报告》汇总了自2018年共同研究开始以来各国自动驾驶发展的现激袭状,并对产业发展趋势及中国现行标准及法律适用性进行了分析。此外,报告还通过问卷方式,对50余家企业的自动驾驶技术现状及测试评价相关需求进行调研,确定核心功能和关键性能,形成适用于自动驾驶功能现状及未来技术发展趋势的测试评价方法,并基于研究成果提出了相关管理建议。

在“日产智行(Nissan Intelligent Mobility)”技术愿景下,日产汽车多年来致力于智能网联和自动驾驶技术的研发,通过日产ProPILOT超智驾等技术,推动社会向“零事故”“零伤亡”的目标迈进。目前,日产第七代天籁Altima、奇骏与逍客均已搭载了屡获殊荣的日产ProPILOT超智驾功能。到2022年,日产汽车计划在70%的车型上搭载该功能。

未来,日产汽车将进一步加速“日产智行(Nissan Intelligent Mobility)”在中国的全面落地,同时,日产汽车还将继续携手产业相关方,加强面向中国市场的智能网联研发和应用,推动相关技术的发展和相关法律法规的制定,共同引领未来交通出行的变革。

据易车了解,今后后续测试评价框架将作为后续标准制定的支撑,伴随技术研究持续完善和更新,要适应自动驾驶技术方向的多样性特点,测试评价方法寻求更多细化的内容,并将管理建议提交至主管部门参考,为产品准入认证和标准提供思路,在未来检验和验证结果成熟后推动国家标准法规协调,未来日产汽车将与中汽中心在这方面更加紧密的合作,更多消息我们也将持续关注。

安全性是自动驾驶技术的一道红线,怎样实现真正的驾驶安全?

据了解,实现自动驾驶汽车的安全性保障当然是靠人工智能系统安全机制管控了,这是一种高度安全的行车生态系统。它由各种车李镇载传感器检测行车路况信息输入专用计算机系统处理后,发出执行命令让联动系统协调运行,以达到和保障行车安全之目的。

一、车载传感器检测系统

该系统是自动驾驶车辆的耳目,汽车上安装的各类检测传感器,如:GPS卫星导航,测距传感器,倾角传感器,路面平整度传感器,速度与加速度振动传感器,噪声传感器,无线充电系统,障碍识别传感器等数十种,这些传感器的目的就是全方位时实检测车辆运行环境下的状态信息,然后输入给计算机系统处理后作出正确的执行命令。

二、车载计算机处理系统

车载计算机处理系统是车辆的神经中枢,是人工智能的核心,作用是将车载传感器系统检测到的行车路况信息分析处理后,将执行命令馈送给动作执行机构完成。这个过程是从信息采集、分析与处理是在极短时间完成的,而且是实时的,过度过程响应在毫秒级水平,即快速反应敏感程度已超过人的耳目所见所闻到大脑判断的响应程度。

三、故障预警与事务系统

故障预警系统虽然是自扰哪动驾驶系统的辅助系统,但它是与一、二系统处于闭环状态下的联动机制。执行可能一是让主人确认后执行,否则按预定运算程序执行。该系统其事务功能与哪李粗安全程序没有逻辑联动功能,除非有人为切换到生理功能,休闲、吃饭与睡觉等需求。

未来的自动驾驶汽车的安全保障系统是一个以人的高度安全与舒适度为目标的生态系统。这种美好的实现,希望尽快实现。

智能驾驶系统对行车安全都有什么帮助?

简单来说,智能驾驶系统即是一套能够让驾驶变得更简单的驾驶辅助系统,其可通过降低驾驶难度与驾驶疲劳,从而切实保障行车安全性。而且,时下个别先进的智能驾驶系统更有着规避交通事故的发生,以及将事故的危害降到最低的作用,它们对于行车安全的保障更加全面。比如说,配置在一汽-大众新迈腾身上的IQ.DRIVE技术,很好地降低了驾驶难度与驾驶疲劳的同时,更能规避交通事故的发生,能将事故的危害降至最低。具体来看:

新迈腾的IQ.DRIVE可实现L2+级智能驾控,是当下最先进的智能驾驶技术之一,其在ACC 3.0自适应续航、Lane Assist车道保持、AEB自动紧急刹车、PreCrash Heck后部预碰撞、PreCrash Basis Front 基础预碰撞前部预碰撞、第三代自动泊车系统PLA3.0、HOD电容式方向盘手离检测、360度全景影像、RTA后方交通预警系统、Traffic Jam Assist交通拥堵辅助、MKB多次碰撞预防、Travel Assist等一系列ADAS 科技 的加持下,可实现全速域的智能驾控,从出发的那一刻开始,就能为车主提供全面的安全守护。

其中,ACC 3.0自适应续航可让配置有IQ.DRIVE的新迈腾在0-160Km/h的速度区间内,保持安全距离自动跟跟随前车起步、停车和减速,通过解放驾驶员的双脚,起到降低驾驶难度、削减驾驶疲劳、保障行车安全的作用。同时,在堵车时可实现自动保持车距,并保持在同一车道内行驶的Traffic Jam Assist交通拥堵辅助系统,也是能有效降低驾驶难度、削减驾驶疲劳与保障行车安全。当然,Traffic Jam Assist交通拥堵辅助的实现,离不开Lane Assist车道保持系统的协助,且Lane Assist车道保持系统得益于可自动识别车道线,其还能在车辆偏离车道时自动进行反向修正,从而确保行驶稳定性,降低危险发生的可能和驾驶难度。

除了Lane Assist车慧行道保持系统可以降低危险发生的概率之外,同时新迈腾IQ.DRIVE的RTA后方交通预警、Side Assist变道辅助、HOD电容式方向盘手离检测等ADAS智能 科技 ,也是能有效避免事故的发生。

比如说,RTA后方交通预警系统,在车尾的雷达传感器若探测到后方有移动物体接近时,就会发出警告,且在紧急情况下更能主动刹车干预,从而规避倒车时的潜在事故。

又比如说,Side Assist变道辅助系统则是在驾驶员打开转向灯之后,就会自动检测即将变更的车道后方是否有车辆靠近,如若有车辆靠近物游,则会警示驾驶员,从而规避变道的安全隐患。

在此基础上,IQ.DRIVE的PreCrash Heck后部预碰撞、PreCrash Basis Front 基础预碰撞前部预碰撞和MKB多次碰撞预防系统等,还赋予了新迈腾强大的应变能力,使其不仅能时刻预判前方的碰撞与后车的追尾风险,通过自动触发安全带预警,来保障车内驾乘人员的安全;同时,其更能在碰撞事故发生时给予车辆额外的制动力,将碰撞的危害降至最低,并避免二次碰撞带来的伤害。

不难看出,智能驾驶系统对于行车安全有着"质"的提高与帮助,正如新迈腾的IQ.DRIVE,从事故源头上削减安全隐患的主动安全,在 汽车 保有量日益增长的当下,比之气囊、车身刚度等带来的被动安全,更加实用与优秀。当然,对于 汽车 而言,全面的被动安全守护也是不可或缺的。

智能驾驶本质上涉及注意力吸引和注意力分散的认知工程学,主要包括网络导航、自主驾驶和人工干预三个环节。智能驾驶的前提条件是,我们选用的车辆满足行车的动力学要求,车上的传感器能获得相关视听觉信号和信息,并通过认知计算控制相应的随动系统。

智能驾驶的网络导航,解决我们在哪里、到哪里、走哪条道路中的哪条车道等问题;自主驾驶是在智能系统控制下,完成车道保罩碧销持、超车并道、红灯停绿灯行、灯语笛语交互等驾驶行为;人工干预,就是说驾驶员在智能系统的一系列提示下,对实际的道路情况做出相应的反应。

智能驾驶是工业革命和信息化结合的重要抓手,快速发展将改变人、资源要素和产品的流动方式,颠覆性地改变人类生活。

智能驾驶系统是一个集中运用了先进的信息控制技术,剧本环境感知、多等级辅助驾驶等功能于一体的综合系统。智能驾驶系统作为各国重点发展的智能交通系统中的一部分,仍在不断的 探索 与实验中[3]。

系统逻辑结构

按照递阶控制结构理论及交通系统的层次性结构特性,可将基于互联网思维应用的智能驾驶系统的逻辑框架自下而上划分为:感知层、网络层、分析层和应用层。

1.1感知层介绍

感知层,即数据采集层,主要由影响驾驶的各要素信息构成,即人、车、路的信息采集及三者信息的相互联系与交叉影响,主要可以分为以下两点:

(1)路况信息的采集,如道路几何构造,路面状况,道路灾害,路网条件及交通状况等,一般可通过GPS或北斗系统等高精度导航系统进行采集。

(2)车辆信息,车辆信息主要包括车辆原始数据,如(车辆型号,车辆理论参数等)以及车辆行驶动态数据,如(行车速度,行车时间、行车轨迹等),一般可通过CAN总线的方式进行数据采集。

1.2网络层介绍

网络层,即数据的传输调度层,路况信息在经过导航系统进行数据采集后通过报文通信的方式进行数据传输,车辆信息有CAN总线进行数据采集后以GPRS通信模块的方式进行数据传输,数据传输至本层后,由本层进行汇总整合后传输至分析层中。

1.3分析层介绍

分析层,即大数据的分析处理层,由于大数据采集与处理的无序性,在已定义的函数模型下,对影响驾驶的数据进行计算处理。处理结果将传送至应用层中,同时将返回至网络层中进行存储与调用,并在网络层中建立行驶数据库。

1.4应用层介绍

应用层,即应用服务层,依据数据采集与处理的结果,通过数据接口的方式可进行跨应用,跨系统之间的信息共享与信息协调。在互联网的大数据应用思维及互联互通的理念下,智能驾驶系统的应用主要为分为三大模块:用户服务系统、交通管理系统、 汽车 营销系统。

(1)用户服务系统。基于互联网思维的智能驾驶系统以驾驶员的行车安全性、舒适度等为约束,通过互联网的云处理与计算平台,得出建议的车辆安全行驶评定值、预警意见、适宜车速等驾驶控制数据流,由车体通过CAN总线接收数据,自动进行数据信号转换,进行行驶控制与调节,同时提出行驶对策的辅助指导可视化界面,人机交互协调车辆关系,保障行车安全,提高人的驾驶愉悦性。

自适应巡航+车道保持,跑高速简直不能更香[泪奔][泪奔][泪奔]

通过传感器感知障碍、人、车与自车距离的变化,通过电脑计算施加包括车速、制动、避让的精准快速的干预动作,减少危险的发生

安全?只会让人死得更惨,如果失效的状态下,他只会加速前进,直到撞停为止。我不知道为什么这么多人整天在想这个东西,地铁在隐蔽的空间,固定的轨道上行驶了100多年。都做不到自动驾驶,到现在都还是要人工驾驶,你那些在人多车多的地方自动驾驶行得通吗?

本站内容来源于互联网,由于内容是机器自动获取,无法一一甄别,如果有侵权的内容,请联系站长处理