遗传算法(遗传算法的基本原理)

遗传算法理解

遗传算法是一种进化算法遗传算法,进化是什么哪?就是种群逐渐适应生存环境遗传算法,种群中个体不断得到改良的过程。

遗传算渗冲法是一种对生物遗传的模拟、在算法中,初始化一个种群,种群中的每个染色体个体都是一种解决方案,我们通过适应性fitness来衡量这个解决方案的好坏。并对它们进行选择、变异、交叉的操作,找到最优的解决方案。

遗传算法(遗传算法的基本原理)

总结一下遗传算法的基本的步骤遗传算法

1.初始化一个种群,并评估每条染色体所对应个体的适应度。

2.选择、交叉、变异,产生新的种群

3.再评估每个个体的适应值,如果适应值达到要求或者达到最大循环次数,否则重复2,不断产生罩喊神新种群。

知道遗传算法了GA的大致流程之后、来具体分析一下细节,怎么实现吧

我们知道遗传算法起源于生物遗传,因此在种群中每个个体就是一个染色体,那如何对染色体进行编码,让它表示我们的解决方案那(就是把现实要优化的参数用编码表示成一个染色体)。这里就遇到了一个编码、解码的问题,我们将需要优化的目标编码成染色体,然后再解码为我们可以用来计算fitness的解遗传算法

一般在进行参数优化时,一般有两种方式:实数编码、二进制编码

实数编码:基因直接用实数进行表示,这样的表示方法比较简单,不用特意解码了,但是在交叉和变异时,容易过早收敛,陷入局部最优。

二进制编码:将基因用二进制的形式表示,将参数的值转化为二进制形式,这样交叉、变异时更好操作,多样性好,但是占用的存储空间大,需要解码。

染色体就称为个体。对于一次实验,个体就是需要优化参数的一种解、许多这样的个体就构成了种群。

在面对群体中那么多个体时,如何判断个体的好坏呢,就是通过适应值函数了,将解带入适应值函数,适应值越大、解越好。

在遗传算法中,我们怎么使得里面的个体变得越来越优秀呢?

核心思想就是:选择优秀的、淘汰不好的,并且为了生成更好的解,我们要尝试交叉、变异,带来新的解。

选择就是从当前的种群中选择出比较好的个体、淘汰不好的个体

常见的选择方法有:轮盘赌选择、锦标赛选择、最佳保留选择等等

轮盘赌选择就是根据每个个体fitness和种群所有fitness之和比较,确定每个个体被选中的概率,然后进行n次选择,选择n个个体构成新种群,是一种放回抽样的方式。

锦标赛就是每次从种群中选择m个个体,选择最优的,放入新种群,重复选择,直到新种群中个体数目达到n。

最佳保留选择就是在轮盘赌的基础上,将fitness个体先加进新种群,因为轮盘赌是一种概率模型,可能物亏存在最优个体没有进入新种群的情况。

在选择之后,就要考虑产生新的、更优秀的解,为种群带来新的血液。遗传算法的思路是交叉两个优秀的解,往往get好的解。

交叉通过在经过选择的种群中,随机选择一对父母,将它们的染色体进行交叉,生成新的个体,替代原来的解。

常用的交叉方法有:单点交叉、多点交叉等等。

交叉就像生物里面,染色体交换基因一样的~但是并不是种群中所有个体都进行交叉的,实现时可以,设置一个交叉率和交叉概率,随机选择种群中两个体、随机一个数,小于交叉率就进行交叉操作,并根据交叉概率判断交叉的程度,从而生成新个体,反之就保留这两个体。

变异也是一种产生新个体的方式,通过改变个体上基因,期望产生更好的解。比如在以二进制编码的个体上,将里面的0、1进行等位变化啥的,就是0变1、1变0这样。同样也要考虑变异率、变异产生的新解是不可控的,可能很好,也可能很坏,不能像交叉一样,确保一定的效果,所以往往变异率设置的比较小。

什么是遗传算法?

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

说简单了,就是利用达尔文生物进化的原理,利用计算机编程,对问题进行优化求解的一种方法。生物体内遗传因子通过选择、交叉、变异之后,在经过多代的适者生存,是的最适应环境的遗传因子得以遗传到后代,而遗传算法通过一定的算法编写代码产生初始种群,之后利用遗传因子的原理使得初始种群中的代码逐渐接近所求问题得最优解,再根据编码原理解码,使代码还原为非计算机语言表示的真实问题。

遗传算法的基本原理

遗传算法的基本原理是:

遗传算法是一种基于自然选择和群体遗传机理的搜索算法,它模拟了自然选择和自然遗传过程中的繁殖、杂交和突变现象,在利用遗传物友算法求解问题时,问题的每一个可能解都被编码成一个"染色体",即个体,若干个个体构成了群体(所有可能解)。在遗传算法开始时总段蚂孝是随机的产生一些个体(即初始解),根据预定的目标函数对每一个个体进行评估,给出一个适应度值,基于此适应度值,选择一些个体用来产生下一代,选择操作体现了适者生握稿存的原理,”好“的个体被用来产生下代,“坏”的个体则被淘汰,然后选择出来的个体经过交叉和变异,算子进行再组合生成新的一代,这一代的个体由于继承了上代的一些优良性状,因而在性能上上要优于上一代,这样逐步朝着最优解的方向进化,因此,遗传算法可以看成是一个由可行解组成的群体初步进化的过程。

什么是遗传算法

遗传算法闭稿是模拟自然界中按“优胜劣汰”法则进巧斗行进化过程而设计的算法。Bagley和Rosengerg于1967年在他们的博士论文中首先提出了遗传算法的概念。1975年Holland出版的专著奠定了遗传算法的理论基础。如今遗传算法不但给出了清晰的算法描述,而且也建立了一些定量分析的结果,在众多领域得到了广泛的应用,如用于控制(煤气管道的控制)、规划(生产任务规划)、设计(通信网络设计)、组合优化(TSP问题、背包问题)以及图像处理和信号处理轿宽孝等。

遗传算法是什么??

遗传算法(Genetic Algorithm)是烂宽森一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。

遗传算法(Genetic Algorithms简称GA)是由美国Michigan大学的John Holland教授于20世纪60年代末创建的。它来源于达尔文的进化论和孟饥亩德尔、摩根的遗传学理论,通过模拟生物进化的机制来构造人工系统。遗传算法作为一种全局优化方法,提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域,对优化函数的要求很低并且对不同种类的问题具有很强的鲁棒性,所以广泛应用于计算机科学、工程技术和社会科学等领域。John Holland教授通过模拟生物进化过程设计了最初的遗传算法,我们称之为标准遗传算法。

标准遗传算法流程如下:

1)初始化遗传算法的群体,包括初始种群的产生以及对个体的编码。

2)计算种群中每个个体的适巧嫌应度,个体的适应度反映了其优劣程度。

3)通过选择操作选出一些个体,这些个体就是母代个体,用来繁殖子代。

4)选出的母代个体两两配对,按照一定的交叉概率来进行交叉,产生子代个体。

5)按照一定的变异概率,对产生的子代个体进行变异操作。

6)将完成交叉、变异操作的子代个体,替代种群中某些个体,达到更新种群的目的。

7)再次计算种群的适应度,找出当前的最优个体。

8)判断是否满足终止条件,不满足则返回第3)步继续迭代,满足则退出迭代过程,第7)步中得到的当前最优个体,通过解码,就作为本次算法的近似最优解。

具体你可以到百度文库去搜索遗传算法相关的论文,很多的。

你也可以参考百度百科里对遗传算法的介绍。

遗传算法

根据问题的目标函数构造一个适值函数,对一个由多个解(每个解对应一个染色体)构成的种群进行评估、遗传、选择,经多代繁殖,获得适应值最好的个体作为问题的最优解。

1,产生一个初始种群

2,根据问题的目标函数构造适值函数

3,根据适应值的好坏不断选择和繁殖

4,若干代后得到适应值最好的个体即为最优解搭雀慧

1.种群和种群大小

一般越大越好,但是规模越大运算时间越大,一般设为100~1000

2. 编码方法 (基因表达方法

3. 遗传算子

包括交叉和变异,模拟了每一代中创造后代的繁殖过程。是遗传算法的精髓

交叉:性能在很大程度上取决于交叉运算的性能,交叉率Pc:各代中交叉产生的后与代数与种群中的个岁渗体数的比。Pc越高,解空间就越大,越耗时/

变异:Pm:种群中变异基因数在总基因数中的百分比。它控制着新基因导入种群的比例。太低,一些有用的基因就难以进入选择;太高,后代就可能失去从双亲继承下来的良好特性,也就失去了从过去中搜索的能力。

4.选择策略

适者生存,优胜劣汰

5.停止准则

最大迭代数

初始种群的产生:随知答机产生,具体依赖于编码方法

编码方法 :二进制编码法、浮点编码法、符号编码法。顺序编码,实数编码,整数编码。

适值函数 :根据目标函数设计

遗传运算 : 交叉 :单切点交叉,双切点交叉,均匀交叉,算术交叉

变异 :基本位变异(Simple Mutation):对个体编码串中以变异概率、随机指定的某一位或某几位仅因座上的值做变异运算。

均匀变异(Uniform Mutation):分别用符合某一范围内均匀分布的随机数,以某一较小的概率来替换个体编码串中各个基因座上的原有基因值。(特别适用于在算法的初级运行阶段)

边界变异(Boundary Mutation):随机的取基因座上的两个对应边界基因值之一去替代原有基因值。特别适用于最优点位于或接近于可行解的边界时的一类问题。

非均匀变异:对原有的基因值做一随机扰动,以扰动后的结果作为变异后的新基因值。对每个基因座都以相同的概率进行变异运算之后,相当于整个解向量在解空间中作了一次轻微的变动。

高斯近似变异:进行变异操作时用符号均值为P的平均值,方差为P**2的正态分布的一个随机数来替换原有的基因值。

选择策略 :1.轮盘赌选择(Roulette Wheel Selection):是一种回放式随机采样方法。每个个体进入下一代的概率等于它的适应度值与整个种群中个体适应度值和的比例。选择误差较大。

2.随机竞争选择(Stochastic Tournament):每次按轮盘赌选择一对个体,然后让这两个个体进行竞争,适应度高的被选中,如此反复,直到选满为止。

3.最佳保留选择:首先按轮盘赌选择方法执行遗传算法的选择操作,然后将当前群体中适应度最高的个体结构完整地复制到下一代群体中。

4.无回放随机选择(也叫期望值选择Excepted Value Selection):根据每个个体在下一代群体中的生存期望来进行随机选择运算。方法如下:

(1) 计算群体中每个个体在下一代群体中的生存期望数目N。

(2) 若某一个体被选中参与交叉运算,则它在下一代中的生存期望数目减去0.5,若某一个体未 被选中参与交叉运算,则它在下一代中的生存期望数目减去1.0。

(3) 随着选择过程的进行,若某一个体的生存期望数目小于0时,则该个体就不再有机会被选中。

5.确定式选择:按照一种确定的方式来进行选择操作。具体操作过程如下:

(1) 计算群体中各个个体在下一代群体中的期望生存数目N。

(2) 用N的整数部分确定各个对应个体在下一代群体中的生存数目。

(3) 用N的小数部分对个体进行降序排列,顺序取前M个个体加入到下一代群体中。至此可完全确定出下一代群体中M个个体。

6.无回放余数随机选择:可确保适应度比平均适应度大的一些个体能够被遗传到下一代群体中,因而选择误差比较小。

7.均匀排序:对群体中的所有个体按期适应度大小进行排序,基于这个排序来分配各个个体被选中的概率。

8.最佳保存策略:当前群体中适应度最高的个体不参与交叉运算和变异运算,而是用它来代替掉本代群体中经过交叉、变异等操作后所产生的适应度最低的个体。

9.随机联赛选择:每次选取几个个体中适应度最高的一个个体遗传到下一代群体中。

10.排挤选择:新生成的子代将代替或排挤相似的旧父代个体,提高群体的多样性。

之前在网上看到的一个比方,觉得很有趣:

{

既然我们把函数曲线理解成一个一个山峰和山谷组成的山脉。那么我们可以设想所得到的每一个解就是一只袋鼠,我们希望它们不断的向着更高处跳去,直到跳到最高的山峰。所以求最大值的过程就转化成一个“袋鼠跳”的过程。

下面介绍介绍“袋鼠跳”的几种方式。

爬山算法:一只袋鼠朝着比现在高的地方跳去。它找到了不远处的最高的山峰。但是这座山不一定是最高峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。

模拟退火:袋鼠喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高峰跳去。这就是模拟退火算法。

遗传算法:有很多袋鼠,它们降落到喜玛拉雅山脉的任意地方。这些袋鼠并不知道它们的任务是寻找珠穆朗玛峰。但每过几年,就在一些海拔高度较低的地方射杀一些袋鼠。于是,不断有袋鼠死于海拔较低的地方,而越是在海拔高的袋鼠越是能活得更久,也越有机会生儿育女。就这样经过许多年,这些袋鼠们竟然都不自觉地聚拢到了一个个的山峰上,可是在所有的袋鼠中,只有聚拢到珠穆朗玛峰的袋鼠被带回了美丽的澳洲。

}

(把那些总是爱走下坡路的袋鼠射杀,这就是遗传算法的精粹!)

遗传算法并不保证你能获得问题的最优解,但是使用遗传算法的最大优点在于你不必去了解和操心如何去“找”最优解。(你不必去指导袋鼠向那边跳,跳多远。)而只要简单的“否定”一些表现不好的个体就行了。(把那些总是爱走下坡路的袋鼠射杀,这就是遗传算法的精粹!)

改进与变形

编码方法:

本站内容来源于互联网,由于内容是机器自动获取,无法一一甄别,如果有侵权的内容,请联系站长处理