深度学习算法在医学影像分类中的应用(在医学影像的基础上,通过深度)

本文目录一览:

AI医疗技术有哪些重要应用,可以举例吗?

随着技术的快速发展,AI医疗技术已得到了广泛的应用,比如:

深度学习算法在医学影像分类中的应用(在医学影像的基础上,通过深度)

1、智能药物研发

智能药物研发是指将人工智能中的深度学习技术应用于药物研究,通过大数据分析等技术手段快速、准确地挖掘和筛选出合适的化合物或生物,达到缩短新药研发周期、降低新药研发成本、提高新药研发成功率的目的。

2、智能诊疗

智能诊疗贯穿医生面诊的前中后整个流程,目前主流的开发方向包括:语音病历、辅助决策、风险预警等领域。比如智能语音病历,就液握是通过语音识别技术,帮助医生快速录入病历,德信数据显示,中国谨肢50%以上的住院医生平均每天有4小时以上在写病历,而应用语音病历后,医生的主诉内容可以实时地转换成文字,效率大大提升。

再比如辅助治疗决策,辅助治疗决策是很多科技公司目前重点研究的方向,通过先进算法,以临床指南知识库为基础,结合医生经验,对海量真实的临床诊疗数据和离院随访数据进行训练,能够挖掘治疗方案和结局的关联,对比不同治疗方案的效果。从而协助医生为患者提供更精准优质的诊疗方案。

3、医学影像智能识别

AI医学影像是指利用AI在感觉认知和深度学习的技术优势,将其应用在医学影像领域,实现机器对医学影像的分析判断,是协助医生完成诊断、治疗工作的一种辅助工具,帮助医生更快获取影像信息,进行定量分析,提升医生看图、读图的效率,协闹晌庆助发现隐藏病灶,从而达到提高诊断效率和准确率的目的。

4、医疗机器人

医疗机器人是一种智能型服务机器人,它具有广泛的感觉系统、智能和精密执行机构,从事医疗或辅助医疗工作。医疗机器人的目的并不是代替手术医生,而是作为一种辅助工具来拓展医生的手术能力、提高手术质量、减轻医生的工作强度。

5、智能健康管理

根据人工智能而建造的智能设备可以监测到人们的一些基本身体特征,如饮食、身体健康指数、睡眠等,对身体素质进行评估,提供个性的健康管理方案,及时识别疾病发生的风险,提醒用户注意自己的身体健康安全。目前人工智能在健康管理方面的应用主要在风险识别、虚拟护士、精神健康、在线问诊、健康干预以及基于精准医学的健康管理。

如何用深度学习进行CT影像肺结节探测(附

1.数据预处理

首先用SimpleITK把mhd图片读入深度学习算法在医学影像分类中的应用,对每个切片使用Gaussian filter然后使用阈值-600把肺部图片二值化,然后再分析该切片的面积,去掉面积小于30mm2的区域和离心率大于0.99的区域,找到3D的连通区域。

只保留0.68L到8.2L体积的区域,并且如果大于6000 mm2的区域到切片的中心区域的距离大于62mm也删除该连通区。最后只留下一个最大的连通区域。

左边是原始图,右边是切完肺的。

在实际中预处理中,深度学习算法在医学影像分类中的应用我们可视化了每个肺的部分切片,存在一些bad case。主要有以下3种,深度学习算法在医学影像分类中的应用我们也对这3种情况做了优化:

把肺边缘结节切掉。因为阈值导致的,把二值化环境-600改成-150有改善。

切出来全部为黑的(未找到任何肺部区域)。有些ct图是从头部开始扫描的,导致影响了连通区域判断,需要手动查看该mhd文件,看里面的从第个切片到第几个切片是肺部,在做完二值化操作后,人为把前面和后面的切片全部设置为0。

切出来只有一侧肺部情况。

有些患者两个肺的大小差别比较大,需要调整阈值,放宽阈值标注,把大于6000 mm2的闹段键区域到切片的中心区域的距离大于62mm也删除该连通区,改为大于1500 mm2的区域到切片的中心区域的距离大于92mm也删除该连通区。并且在最后一步,不只保留最大的连通区,同时保留最大的两个连通区。

2.模型网络结构

我们的网络如图所示,整体上是采用Unet+Resnet的思想。里面每个Resnet Block都是由多个卷积层和bn层和relu层组成的。我们只展示主体结构(整体深度大概150多层):

3.整体优化思路

3.1 数据优化

肺部切割优化:这块其实没有完美的方法能把所有的肺一次性都切好。具体的思路我们已经在第1章数据预处理部分写出来了:我们会先切一遍,然后将切肺中切的不好的,再调参数重新切一次。

10mm 以下结节的训练数据增强。我们在没做数据增强的情况下跑出来的模型,在验证集上漏掉了不少10mm以下的结节,所以对这部分的结节做了增强。

3.2 工业界优化思路:模型架构 模型网络

我们的优化思路非常的工业界,用更多的计算资源,和更复杂的模型架构,并不把大量的时间用在调模型网燃孝络上面。

3.3 层次化Hard Mining

业界两套网络的做法比较普遍,比如用Unet切割或Faster RCNN检测,用3D CNN分类,如下图所示。

我们用的是如下统一的一套模型架构,即3D Faster RCNN的RPN网络,没有后续的全连接做分类,也并没有

再在后面接一套3D CNN来做降假阳。能减少需要调节的网络参数。

该hard mining的过程,其实就是用上一层的模型作为下一层的输入,每一层的训练数据都选取比上一层更难分的。

这套架构,无需2套网络,只需要选择一套较深的网络。

根据我们的经验,采取层次化模型训练,第二层模型froc能比第一层效果提升0.05,第三层能比第二层提升0.02。

3.4 LOSS 函数的设计

在计算loss函数的时候,我们做了2点优化。

1.在使用hard mining的时候,每个batchsize里面负例的个数会明显多于液巧正例。为了防止算loss的时候被负例主导。我们将loss函数分成3个部分,负例的loss,正例的loss和边框的loss。

2.在上一节提到的层次化hard mining,我们在最后一层训练模型的时候,会修改loss函数的计算,对于分错的负例和正例,做加权。这个思路和focal loss是很像的。

比如:

红框里面的部分,本来是负例,却以很大的概率被分成正例,这部分在算loss的时候权值就大些。红框外面的部分权值就小些。

4.本次比赛的关键点总结:

1) 解决了基于Intel extended Caffe的150多层深度网络的 3D Faster RCNN RPN网络收敛问题。

可以从2个方向来解决(线下Phi卡平台均已验证过)。

a)将 drop out设置为 0.1。缺点是会容易过拟合。

b)先训练一个crop size为32的模型

用这个模型做pre train model,训练crop size 64的模型

依次类推。

直到完成crop size为128的模型训练

由于时间关系,我们并未比较这2种思路的效果。比赛中使用的是第1个思路,收敛的更快些。

2) 提出层次化Hard Mining的训练框架。并没有采用常见的,unet做分割+3D CNN降假阳 或者 2d faster rcnn做检测+3D CNN降假阳的思路。我们只用了一套网络。减少了需要调节的网络参数。

3) 重新设计了loss函数,防止负例主导loss的计算, 并且在降低loss的过程中,更聚焦于分错的训练样本。

5. 经验总结:

我们团队虽然过往深度学习架构经验多,但对医学影像处理的know how属于尚在探索之中。所以,我们的优化思路,是用更多的计算资源,和更复杂的模型架构,来弥补没有专用模型网络积累的短板。在第一轮比赛时通过调用比较充足的计算资源时效果比较显著,但在第二轮限定计算资源的多CPU的框架上,比较受限于计算资源及时间。

在计算资源比较充沛的情况下,选取比较深的Resnet效果会明显。在资源受限的实际场合或者现实的生产环境,我们有两点启发:

学会认同重复造轮子的基础性工作。第一轮比赛我们是pytorch框架,第二轮按要求在caffe上实现,特别是在Intel Extended Caffe对3D支持有限,重写了不少很基础的模块,这种貌似重复造轮子的工作,对我们提出了更高的要求,但也锻炼了我们深入到框架底层的能力,从而对不同框架的性能特点有更深的认识,这种重写甚至还因此帮我们找到我们第一版pytorch代码里detect部分存在的一个bug。

根据资源灵活优化训练策略乃至模型。我们的3D Faster RCNN 初期在Extended Caffe 上过于耗时,但因为在计算资源充足环境下我们的做法比较有效,所以没有去考虑一些更快的检测算法,比如SSD、YOLO等,这点也算是路径依赖的教训了。

影像医生组团向吴恩达学AI?北美放射学会举办首个医生AI课程

未来的医生不仅要能看得了片子深度学习算法在医学影像分类中的应用,做得了诊断,很可能还要学会和人工智能更好地合作,在技术加持下让自己的医术更上一层楼。

6月2日消息,全世界最大的医学国际学会之一北美放射学会(RSNA, Radiological Society of North America)在5月31日-6月1日期间举行了第一届针对放射医学工作者的"AI大讲堂"(Spotlight Course on AI: Radiology in the Age of AI ),试图通过两天的课程,介绍放射医学与AI紧密结合的技术起源、现有应用及如何理解AI医学影像方面的学术进展,希望能够帮助医生们适应和新兴技术紧密合作的新时代。

毕竟,医疗拥有大量数据和技术需求,是最先接受大规模AI技术冲击的领域,也是许多技术最快走向应用的行业之一。

这个"AI大讲堂"包括简要介绍医学影像中的AI技术、探讨其对更好地保证人类 健康 的影模余响、如何在自己的医学实践中接入AI系统等多个部分,每个部分都邀请了AI行业领域的佼佼者来进行讨论或者演讲。我们摘录了一些重要观点:

这次课程上,最明确的一点就是,在放射医学领域,AI已经是最重要的技术了。CT、MRI、PET等医学影像手段是医生做诊断的重要资料,而AI强大的数据处理能力能够在多个层面上帮助医生。

世界知名AI专家、斯坦福教授吴恩达介绍了AI和深度学习算法的发展以及AI影像技术的新进展。深度学习算法在医学影像分类中的应用他所处的实验室和斯坦福医院合作,完成了ChestXnet,、Xray4all等用深度学习理解影像的工作。这些深度学习技术可以理解胸部X光中十一种不同的病理表现,检测出膝盖MRI中的异常、检测出在头部CT片子中指向动脉瘤的病理表现等等。

"深度学习已经可以完成所有人类需要一秒钟能完成的基本任务,当然,AI想要完全替代医生进行诊断、判断还有很多路要走,有很多个突破需要做。"吴恩达说道。

本次课程的组织者之一,斯坦福大学医学院放射系副主任Curtis Langlotz教授提到他对AI完全替代临床影像医生的工作的危机并没有那么悲观。他强调影像科医生需要不断改变、多学习最前沿的AI知识与技能,但AI只是临床医学遇到的类似CT、磁共振、超声等新技术之后的又一个有价值的新技术、新发展。临床医生需要将AI新技术利用到临床工作中。"一些医生感觉到琐碎的任务、比如测量病灶大小、跟踪病灶位置大小在不同疾病周期的变化等,这些任务都是AI更擅长的且人不太喜欢和擅长做的。所以从一种角度上AI能让临床医生的工作更好。"他说道,"有了AI的协助,临床医生可以做一些在认知上更有趣更有挑战的任务。"

不可否认的是,医生仍旧面临一些新的挑战。面对AI不断地改变医疗领域的现状,作为近距离接触病患、提供日常医疗服务的医生,如何才能适应这样的时代深度学习算法在医学影像分类中的应用

首先,医生需要更多地了解新技术,以及技术如何应用在临床诊断、手术预后、提前筛查等领域。课程中多位医学影像AI的研究者分享了他们在这些领域的新研究。

"AI不会替代医生,但是会用AI的医生会替代不会用AI的医生。"Curtis Langlotz教授在讨论AI在医疗临床应用时金句频出。

吴恩达也表示:"在 科技 世界里,每五年,我们的工作就会有巨大的变化。如今,技术也正让所有其他行业比以前变化的速度进一步加快。很多过去放射科医生做的事情会被自动化,然而如果这些医稿枝生愿意去思考真正重要的工作是什么,不断拓宽视野,把重心放在(和这些能够自动化的工作)有差异的工作上,他们就无需担心什么。"

其次,新技术本身也能进一步提升医生的专业水平。

英国Kheiron Medical的放射学专家Dr. Hugh Harvey指出,放射学医生需要更多地了解数据科学技术。放射科医生需要了解基础的数据科学、机器学习等方面知识,特别是对于数据的整理。他提到深度学习等AI技术对于数据量的要求很大,但人们讨论时往往只重视数量而忽略了质量。直接从临床系统中旦敬滚拿到的数据是远远不能真正用来做临床AI研究与应用的。

一般数据整理需要至少四层操作。

第一层是临床系统(PACS,电子病历系统)中直接拿到的数据,这些数据往往包含敏感信息,量很大但很杂,不能真用来做研究。

第二层是通过伦理委员会审查、去掉病人敏感信息的数据的数据,医生和研究者可以受限拿到,但是这类数据一般也还是非结构化的没发直接用来做研究。

第三层是将这些数据再进一步进行结构化清洗,进行可视化检验,从而保证图像数据质量等问题。

第四层是最终将这些数据与相应的临床信息匹配,通过人工或者自动的方法为数据打标签从而可以进行AI研究分析。但到这层最后还要确认数据的统计价值是否足够,以及是否有真正的标准来进行标签。比如病人疾病的判断需要根据多位医生读图的结果比照,以及通过后续发病或者随访得到的结果来确认疾病。

对于医生来说,对于技术持开放态度,通过课程、活动、项目交流等方式接触并掌握新兴技术,很可能会让未来的医疗服务"事半功倍"。

参加这次会议的斯坦福神经影像医生、前沿神经功能影像实验室主任、Greg Zaharchuk教授表示这类课程可以很好的将AI理论、应用、发展和局限讲解给临床医生,他很欣喜看到越来越多的影像科医生对AI的热情和想要获得更多这方面知识的态度。

另一方面,他也强调临床AI的研究和真正的临床AI产品部署之间还有很大差距。如何确保算法在不同病例、设备、扫描参数等,都是现在面临的问题,需要再未来逐步解决。

"我很高效看到如此多的影像科医生和从业者参与到这个活动,这次是RSNA组织的第一次AI聚焦课程,我们希望能保持科研、临床与产业的交流。另外AI影像企业像深透医疗等在商业化的同时,还保持学术性的报告和论文发表。严谨地分析产品性能与临床价值,是一件很好的事情。"本次活动的组织者之一斯坦福Dr. Matthew Lungren教授表示。

放射科医生在AI时代面临着更多的机会和挑战,而对更广阔的大众来说,技术能带来的是更多的保障与更高的医疗水平。

在这次活动中,来自吴恩达实验室的博士生Pranav Rajpurkar现场展示了Xray4All平台:上传用户截取的x光影像照片,一两秒传输后,就可以在线获得结果,检测出了异常,并且用高亮来标记出了异常部位。

"这个技术的应用场景特别适合用于解决在发展中国家、全球卫生场景中临床医生资源短缺的问题。"Pranav介绍道。

另一家融资超过4500万美元的美国AI影像公司Arterys也主持了午餐会,介绍了他们的未来愿景:进一步推广他们的影像分析和AI产品,并逐步扩展平台。通过现实世界的数据来为全球人类提供医疗决策,自动化日常的医疗任务,进一步推动医疗平等化、民主化,提供预防性分析。特别的Arterys强调了其影像分析和AI产品都是基于云计算来处理的,特别强调了云计算相比在医院内部计算系统中计算其实更快捷、更安全可靠。

作为每年医疗投入占政府总支出最高的国家之一,美国在推广AI医疗领域技术方面走在全球前列。而中国作为平均医疗资源紧张的人口大国,对AI医疗也有很大的需求。

在这次课程上,国内的推想 科技 、美国的Nuance、以及在中美都快速推广AI影像处理的深透医疗Subtle Medical受邀报告,并以"Implementing AI: the last mile"为主题,探讨了临床部署AI系统产业化的最后关键步骤。

推想医疗介绍了其多款产品在中国接触到数百万的病历,并在美国4家医院/影像中心开展测试。Nuance在美国临床影像的语音识别工具、读图标记工具有很大的市场份额,也在推广其"Nuance AI market"医学影像AI应用商店。

深透医疗是三家中唯一有AI产品获FDA批准进行商业化的。深透医疗CEO宫恩浩博士介绍了如何临床部署其FDA获批的SubtlePET产品,以及对申请中的SubtleMR等产品进行临床测试。

深透医疗SubtlePET产品是第一个获批的医学影像增强应用以及第一个核医学的AI应用,其产品价值重点在于利用AI达到4倍左右的影像采集加速,也为减少辐射以及造影剂剂量提供了解决方案。这一软件方案让病人可以获得更便捷、更高质量、更安全、更智能的临床影像检查。FDA获批后已在美国以及全球的20家顶尖医院和影像中心开展了商业部署与临床合作。

在美国,真正要让医院应用AI并愿意付费有很高门槛,要医院信息系统深入融合,与临床医生确认系统效果,以及对医院论证AI系统购买可以带来的回报。

"在美国真正在医院部署需要和临床医生、信息系统负责人以及医院管理运营方面多方面沟通。以深透医疗为例,公司临床和销售负责人需要和医院进行快捷而有效的真实数据测试,在尽可能不影响医院现有运行的情况下,实时让医院用自己的数据进行临床测试。通过实际的测试以及真实可观的影像检查加速,可以很客观地让医院看到AI为医院带来新的临床价值以及经济价值,从而进展到采购与部署。"深透医疗CEO宫恩浩说道。

医学影像后处理公司TeraRecon的CEO,同时也是医学影像AI平台Envoy公司的CEO, Jeff Soreson与著名影像医生、影像AI推广者Eliot Siegal教授,也以互相采访的形式讨论了如何优化影像AI的工作流程、部署过程,以及不断验证。

"对AI算法深度的临床验证是推广医学AI非常关键的一步,我们在向这个目标不断发展。"Eliot Siegal教授强调。

虽然医学影像已经是AI领域最适合、也能最快部署的领域之一,我们仍然面临着种种挑战。

首先,以深度学习为代表的的AI技术仍是一个"黑箱子"。这意味着技术能够让医疗影像检测达到较高的准确度,然而AI仍然很难理解数据之间的真正关系以及如何分类数据等等。

"在斯坦福,我们希望能够为医学影像感知打造更好的注意力分布图(attention map),来避免黑箱效应。"斯坦福医学院教授Dr. Saafwan Halabi表示。最近有很多研究和报道讨论到基于数据的对抗攻击算法(Adverserial Attack)可以让识别路标的AI无法正常工作。在医疗AI中,如何保证AI不被误导是非常重要的一环,但目前这方面研究的还不够。

斯坦福AIMI人工智能医学影像研究项目负责人,本科课程的负责人之一Dr. Matthew Lungren也讨论了临床AI的偏见问题"bias and implications for medical imaging AI". AI在实际临床用时很可能引入数据偏差(bias)。比如很有可能对于医学影像识别的分类器,识别的是图像里的其他标记,而不是影像中的病灶本身。而目前的工具对于数据和算法中的偏差问题并不能很好的理解。实际临床应用的AI必须要让人能在使用中理解结果的可信性。在系统设计中考虑人机互动以及AI算法给出置信度分析可以大大帮助人来减少可能的偏差问题。

麻省总院机器学习实验室负责人之一Jayashree kalpathy教授讨论了如何打造一个更加鲁棒的模型、如何在多医院合作项目中通过转移学习以及联邦学习等算法,在不用分享敏感数据的情况下就能分享训练出的深度学习AI模型,来进行深度合作。

人工智能时代,技术正在不断渗透、变革各行各业。医学是与人类生活联系极为紧密的领域,而在这样一个庞大、重要、站在AI应用前沿的领域,我们正在看到越来越多帮助技术更好地和医学实践结合的努力。

比如本次RSNA提供的首个医学影像领域AI课程,吸引了超过200位美国顶尖医院医生参加,而行业中的技术人士也乐于提供更多的信息,帮助医生更好理解AI。除此之外,像深透这样的创业企业,也通过产品设计,尽量让医生能够将技术"无缝"接入过去的工作流程,无需额外精力去适应产品。医生对技术更加了解,创业者也为了医生和患者开发出更加优质的产品。

未来,人类的 健康 一定会有更多的技术支撑,但最重要的,还是由行业中的人类共同努力,带来一个更加有效率、有效果的 健康 医疗系统。

在医学影像的基础上通过深度学习与大数据技术等可以完成什么工作?

在医学影像的基础搜碧旦上,世扰通过深度学习与大数据技术,可以完成对慧团疾病的诊断发展的论述,以及对疾病的治疗等多种方式。

既能检索病例还可帮助诊断,看人工智能如何助力医疗升级

你知道吗?眼底医学检查是窥见高血压、糖尿病、冠心病、帕金森症等重大慢病信号的重要窗口,但是很多患者因定期复查的时间、财务成本和距离的阻隔而错过了控制病变的机会。

在9月18日,首台国产“黑 科技 ”眼底影像仪问世。这个集合了AI辅助诊断系统、华为云人工智能和连接技术以及协和医院顶尖临床实力的眼底影像仪,实现超弱光照量环境下的精准诊疗,简单、快速、无损地还原图像的真实纹理,为眼科医生提供更有利于精准诊断的信息,降低了漏诊、误诊的发生率!

什么是人工智能?

人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。

人工智能在医院里的应用

1、医用虚拟助理

医用虚拟助理是一种基于人工智能技术和医疗知识体系,将患者症状表现与诊疗标准对比,为患者提供全流程服务的专用型信息系统,使用者可以通过语言文字、图像等形式与AI系统进行互动,使其提供医疗咨询等服务。

目前医用虚拟助理可用于疾病诊疗的前、中、后多个环节,如诊疗前的智能导诊机器人能对患者讲话内容进行语义分析经后台数据处理并给出分诊和导诊建议,或通过传感器获取患者生命体征信息并反馈给医生来提高问诊效率。

2、医学影像识别

AI 与 X 射线、超声、CT和MRI等医学影像结合能提高医师诊断效率,辅助治疗与判断。AI在医学影像领域的应用主要是图像分割、分类、配准、识别和深度学习系统等,即通过分析影像获取有意义的信息,进行大量的影像数据对比,进行算法训练,逐步掌握诊断能力。医学影像领域已成为AI与大数据在医疗领域应用发展最快的方向之一。

3、病理诊断

AI在标注病理结构等肿瘤特征时能够识别到人眼无法观察到的细节并作定量描述,可避免医师主观性带来的差异。AI深度学习技术在病理学领域展现出极大的应用前景,它可以帮助病理医师提高诊断效率和准确性,减轻工作负担,缓解病理医师缺乏以及不同地区医师诊断水平差距明显的难题,为患者提供更加精准、可靠的高质量医疗服务。

4、辅助诊疗

辅助诊疗是指将AI技术用于疾病诊疗中,让计算机从医学书籍、文献、指南和案例等深度学习医学知识并归纳,建立知识库,模拟医师的思维和诊断推理过程,对患者的病症信息等医疗大数据进行智能匹配,通过已信早学习的知识推理判断疾病原因与发展趋势,给出初步的诊断和治疗方案,医师参考辅助诊疗结果并结合临床经验提供更多的临床决策指导,使诊疗流程更加客观、科学、合理、高效。

5、医学数据平台

基于AI与互联网技术的铅察医学数据平台可以分为两类:一是医学研究大数据平台,通过对医学文献中的海量医疗大数据进行分析,能够有效促进医学研究;二是医学评价数据平台,通过平台获取医疗机构内包括病案首页以及大型医用设备和临床重点药物相关的医疗活动中重要的数据点,让大数据进行分析和数据模型推演,从而提高医疗机构相关工作整体管理水平。

6、疫情诊治与监测

AI 借助大数据技术可以通过影像识别、自动体温检测和病毒溯源等辅助新冠肺炎诊治并进行疫情监测预警,开发适宜的预警关键技术,基于人工智能的疫情监控云平台监测预警、疫情地图、确诊及密切接触人员轨迹追踪、人群流动监测等在减少人力成本、降低感染风险的同时显著提升抗疫效率。

人工智能技术广泛的应用前景,将给老百姓看病带来许许多多、实实在在的便利。手术机器人、远槐坦茄程手术等应用场景,还将让更多百姓享受到优质的医疗资源。

专家:中国传媒大学信号与信息处理专业副教授余心乐

本站内容来源于互联网,由于内容是机器自动获取,无法一一甄别,如果有侵权的内容,请联系站长处理