深度强化学习在斯坦福自动驾驶车队中的应用(斯坦福机器人dh参数)

本文目录一览:

如何深度强化学习 人工智能和深度学习的进阶

传统上,强化学习在人工智能领域占据着一个合适的地位。但强化学习在过去几年已开始在很多人工智能计划中发挥更大的作用。其最佳的应用点在于计算艾真体(agent)在环境上情境化的决策场景中要采取的最佳行动。

深度强化学习在斯坦福自动驾驶车队中的应用(斯坦福机器人dh参数)

强化学习非常适合自主决策,因为单靠监督学习或无监督学习技术无法完成任务

传统上,强化学习在人工智能领域占据着一个合适的地位。但强化学习在过去几年已开始在很多人工智能计划中发挥更大的作用。其最佳的应用点在于计算艾真体(agent)在环境上情境化的决策场景中要采取的最佳行动。

强化学习使用试错法将算法奖励函数最大化,它非常适用于IT运营管理、能源、医疗保健、商业、金融、交通和金融领域的很多自适应控制和艾真体自动化应用。它用来训练人工智能,它为传统的重点领域提供支持——机器人技术、游戏和模拟——以及边缘分析、自然语言处理、机器翻译、计算机视觉和数字助理等新一代人工智能解决方案。

强化学习也是物联网中自主边缘应用程序开发的基础。很多边缘应用程序的开发(工业、交通、医疗和消费应用)涉及对注入了人工智能的机器人技术的构建,这些技术可以在动态环境条件下以不同程度的情境自主性进行操作。

强化学习如何工作

在这样的应用领域中,边缘设备的人工智能大脑必须依赖强化学习,由于在这里缺少预先存在的“真实值(ground truth)”训练数据集,他们试图将碰简绝累计奖励函数最大化,例如根据规范中包含的一组标准组装一个生产组件。这与其它类型的人工智能的学习方式形成对比,后者要么是(像监督学习一样)对相对于真实值数据的算法上的损失函数进行最小化,要么(像无监督学习一样)对数据点之间的距离函数进行最小化。

但是,这些人工智能学习方法不一定是孤岛。最有趣的人工智能趋势之一是强化学习与更高级的应用程序中的监督学习和无监督学习的融合。人工智能开发人员将这些方法融入到仅凭单一的学习方法不足为用的应用程序中。

例如,监督学习本身在没有标记的训练数据的情况下是无用的,在自动驾驶这样的应用中往往缺乏标记的训练数据,在这里,每个瞬时的环境情况本质上都是未标记且独特的。同样,无监督学习(使用聚笑姿类分析来检测传感器馈源和其它复杂的未标记数据中的模式)并非用来发现智能终端在真实世界的决策场景中应采取的最佳操作。

什么是深度强化学习

然后是深层强化学习,这是一种领先的技术,在这种技术中,自治的艾真体(autonomous agent)使用强化学习的试错算法和累计奖励函数来加速神经网络设计。这些设计为很多依靠监督和/或无监督学习的人工智能应用程序提供支持。

深度强化学习是人工智能开发和培训管道自动化的核心重点领域。它涉及对强化学习驱动的艾真体的使用,以快速探索与无数体系结构、节点类型、连接、超参数设置相关的性能权衡,以及对深度学习、机器学习和其他人工智能模型设计人员可用的其它选择。

例如,研究人员正在使用深度强化学习来快速确定哪一种深度学习卷积神经网络(CNN)架构可能用于解决特征工程、计算机视觉和图像分类中的各种难题。人工智能工具可能会使用从深度强化学习获得的结果来自动生成最佳CNN,使用TensorFlow、MXNet或PyTorch等深度学习开发工具来完成该任务。

在这方面,看到强化学习发展和培训的开放框架的出现是鼓舞人心的。你在探索深度强化学习时可能需要探索下面这些强化学习咐罩框架,这些框架利用、扩展并与TensorFlow和其它深度学习和机器学习建模工具接合,这些工具已得到广泛采用:

强化学习

人工智能开发人员需要的强化学习技能

展望未来,人工智能开发人员将需要沉浸在这些框架和其它框架中实施的各种强化学习算法中。你还需要加深对多艾真体强化学习架构的理解,这其中有很多架构大量利用老牌的博弈论研究机构。你还要熟悉深度强化学习,以此来发现计算机视觉应用中与名为“模糊”的攻击方法相关的安全漏洞。

优就业深度学习都学什么?

优就业的深度学习直播课是联合中科院自动化所专家合作研发,课程包含6大实战项目,都是来自于漏闹企业的项目实操。具体是哪些实战项目呢?下面给大家介绍一下~

项目一:手写数字识别项目实战

本项目基于目前最流行的开源深度学习框架 TensorFlow

来实现手写体数字识别,采用多层卷积神经网络来进行手写数字图片的特征提取,利用全连接神经网络来进行手写数字图片的识别。整个项目流程包括数据的分析与处理、模型结构的设计、优化调试及结果分析等,最终识别精度达到

90%以上。 该技术方面可应用于文本数据识别场景,如卡证文本数据识别、票据文本数据识别、汽车场景文字识别等。

项目二:文学作品文本特征向量化实战

本项目主要关注深度学习在自然语言处理中桥拦的应用,利用循环神经网络及长短时记忆网络来实现该领域中的词嵌入学习和上下文推断。项目将选取部分文学作品文本,依次实现词嵌入特征提取和基于长短时记忆的上下文推断。相关技术可用于带时间、空间属性的序列数据处理,如经济数据预测、股票数据预测、消费者消费行为数据预测。

项目三:基于 GAN 生成人脸图片项目实战

学完以后可直接应用于智能客服对话生成、视觉图像合成、数据增强等任务。本项目将以人脸图片生成作为实例,介绍生成式对抗网络的原理与实现。

项目四:基于分布式 GAN 人脸图片生成项目实战

通过并行的方式来提高深度学习的数据吞吐量,加速模型的学习训练过程。本项目加以人脸图片生成为基础,介绍深度学习的 GPU

和分布式集群并行模式。相关技术可直接应用于人工智能+大数据/云计算的各种场景。

项目五:基于深度强化学习的迷宫游戏项目实战

本项目将简要介绍强化学习的基本思想,并通过游戏迷宫的实践展示深度强化学习的开发和训练过程,实现 AI

系统对环境的自主探索学习和智能决策。相关技术可用于自动驾驶、AI 量化投资、电商产品推荐、机器人、人机交互、优化调度等辅助决策任务。

项目六:企业级车牌识别项目实站

本项目将以车牌识别为实战应用,指导学员完成典型人工智能项目的全流程实现,包括项目定位于需求分析、系统架构设计、功能模块实现、关键算法应用、测试与维护等环节。项目会重点敏搜胡介绍核心

AI

模块的开发与测试,相关实战环节可使学员熟悉实际企业级项目完整周期。本项目的技术核心可扩展应用于其他类似问题的识别,如集装箱号码识别,也可作为智能停车场项目的核心模块之一。

dg和dl什么意思

dg是分布式发睁兆电装置的意思。

DG,中文名为分悉手租布式发电装置,是指功率为数千瓦至50MW(兆瓦)小型模块式的、与环境兼容的独立电源。

分布式发电装置(Distributed Generation)是指功率为数千瓦至50 MW(兆瓦)小型模块式的、与环境兼容的独薯并立电源。

全球自动驾驶汽车硬件和软件最新技术总结(2020)

进入到2020年伏顷,自动驾驶技术走到深度强化学习在斯坦福自动驾驶车队中的应用了需要规模商业化证明技术价值深度强化学习在斯坦福自动驾驶车队中的应用的时候。

不管是封闭或半封闭场景的矿区、港口和园区,还是公开道路的RoboTaxi、RoboTruck等,技术都是自动驾驶在不同场景商业化的基础。

本报告覆盖了自动驾驶汽车所需要的感知、定图与定位、传感器融合、机器学习方法、数据收集与处理、路径规划、自动驾驶架构、乘客体验、自动驾驶车辆与外界交互、自动驾驶对汽车部件的挑战(如功耗、尺寸、重量等)、通讯与连接(车路协同、云端管理平台)等技术领域的讨论,并且提供相应的各自动驾驶公司的实施案例。

本报告是由美国、中国、以色列、加拿大、英国等全球不同国家和地区的自动驾驶专家,针对自动驾驶技术的硬件和软件技术,进行的全面阐述,方便各位读者能够从技术角度,了解最新的技术动态,从而全面了解自动驾驶汽车。

本报告的案例大多数来自汽车领域,这也是目前自动驾驶行业最火热的应用场景,但是,服务个人出行的汽车并不是自动驾驶技术影响深远的行业,其深度强化学习在斯坦福自动驾驶车队中的应用他的行业,如公共交通、货运、农业、矿业等领域,也同样是自动驾驶技术应用的广泛天地。

各类传感器,用于自动驾驶汽车感知环境,如同人类的眼睛,自动驾驶汽车的基础部件深度强化学习在斯坦福自动驾驶车队中的应用;自动驾驶汽车的传感器主要有五种,包括了深度强化学习在斯坦福自动驾驶车队中的应用:1、Long range RADAR;2、Camera;3、LIDAR;4、Short/Medium range RADAR;5、Ultrasound;

这些不同的传感器,主要用于不同距离、不同类型的物体感知,为自动驾驶汽车判断周边环境,提供最重要的信厅差息来源,另外,还有一个环境感知的信息来源是车路协同的来源,这点报告中也有阐述。

1、扫描范围,确定必须对扮厅皮被感测的对象做出反应的时间;

2、分辨率,确定传感器可以为自动驾驶车辆提供的环境细节;

3、视场或角度分辨率,确定要覆盖、要感知的区域需要传感器的数量;

4、刷新率,确定来自传感器的信息更新的频率;

5、感知对象数量,能够区分3D中的静态对象数量和动态对象数量,并且确定需要跟踪的对象数量;

6、可靠性和准确性,传感器在不同环境下的总体可靠性和准确性;

7、成本、大小和软件兼容性,这是量产的技术条件之一;

8、生成的数据量,这决定了车载计算单元的计算量,现在传感器偏向智能传感器,也就是,不仅仅是感知,还会分辨信息,把对车辆行驶影响最重要的数据传输给车载计算单元,从而减少其计算负荷;

下面是Waymo、Volvo-Uber、Tesla的传感器方案示意图:

1、Tesla的传感器,具有加热功能,可抵御霜冻和雾气;

2、Volvo的传感器配备有喷水清洁系统,用于清洁粉尘;

3、Waymo使用的Chrysler Pacifica的传感器有喷水系统和刮水器。

02 SLAM和传感器融合

SLAM是一个复杂的过程,因为本地化需要地图,并且映射需要良好的位置估计。尽管长期以来人们一直认为机器人要成为自主的基本“鸡或蛋”问题,但在1980年代和90年代中期的突破性研究从概念和理论上解决了SLAM。从那时起,已经开发了多种SLAM方法,其中大多数使用概率概念。

为了更准确地执行SLAM,传感器融合开始发挥作用。传感器融合是组合来自多个传感器和数据库的数据以获得改进信息的过程。它是一个多级过程,处理数据的关联,相关性和组合,与仅使用单个数据源相比,可以实现更便宜,更高质量或更多相关信息。

1、顺序地,将驱动过程分解为分层管道的组件,每个步骤(传感,定位,路径规划,运动控制)都由特定的软件元素处理,管道的每个组件都将数据馈送到下一个;

2、基于深度学习的端到端解决方案,负责所有这些功能。

端到端(e2e)学习作为一种解决方案,可以解决自动驾驶汽车复杂AI系统所面临的挑战,因此越来越受到人们的关注。端到端(e2e)学习将迭代学习应用于整个复杂系统,并已在深度学习的背景下得到普及。

03 三种机器深度学习方法

当前,不同类型的机器学习算法被用于自动驾驶汽车中的不同应用。本质上,机器学习根据提供的一组训练数据将一组输入映射到一组输出。1、卷积神经网络(CNN);2、递归神经网络(RNN);3、深度强化学习(DRL);是应用于自动驾驶的最常见的深度学习方法。

RNN——当处理诸如视频之类的时间信息时,RNN是强大的工具。在这些网络中,先前步骤的输出作为输入被馈送到网络中,从而使信息和知识能够持久存在于网络中并被上下文化。

DRL——将深度学习(DL)和强化学习相结合。DRL方法使软件定义的“代理”可以使用奖励功能,在虚拟环境中学习最佳行动,以实现其目标。这些面向目标的算法学习如何实现目标,或如何在多个步骤中沿特定维度最大化。尽管前景广阔,但DRL面临的挑战是设计用于驾驶车辆的正确奖励功能。在自动驾驶汽车中,深度强化学习被认为仍处于早期阶段。

这些方法不一定孤立地存在。例如,特斯拉(Tesla)等公司依靠混合形式,它们试图一起使用多种方法来提高准确性并减少计算需求。

一次在多个任务上训练网络是深度学习中的常见做法,通常称为多任务训练 或辅助任务训练。这是为了避免过度拟合,这是神经网络的常见问题。当机器学习算法针对特定任务进行训练时,它会变得非常专注于模仿它所训练的数据,从而在尝试进行内插或外推时其输出变得不切实际。

通过在多个任务上训练机器学习算法,网络的核心将专注于发现对所有目的都有用的常规功能,而不是仅仅专注于一项任务。这可以使输出对应用程序更加现实和有用。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

本站内容来源于互联网,由于内容是机器自动获取,无法一一甄别,如果有侵权的内容,请联系站长处理